Herausgebergemeinschaft: Prof. Dr. H. Eikmeier, Giessen · Prof. Dr. Dr. h. c. Th. Hiepe, Berlin · Prof. Dr. M. Kietzmann, Hannover · Prof. Dr. I. Nolte, Hannover · Prof. Dr. H.-J. Sinell, Berlin · Prof. Dr. H.-J. Wintzer, Berlin

Verantwortlicher Schriftleiter: Prof. Dr. H.-J. Sinell, Berlin

Redaktion: Dr. H.-O. Schmidtke, Havertoft

112. Jahrgang (6/7), 201–280

Juni/Juli 1999

Dr. W. Nicklas: Mikrobiologische Standardisierung bei Versuchstieren

P. Winter, A. Höflechner, W. Baumgartner: Zum Resistenzzverhalten von ovinen Mastitisregern

I. Yeruham und U. Orfag: Case Report: Primary Fibrosarcoma of the Liver in a Cow

R. Nemcová, A. Bomba, S. Gancaríková, R. Herich, P. Guba: Der Einfluß der Applikation von Lactobacillus paracasei und Fruktosigosacchariden auf die Kotmikroflora der Absatzflecke

E. Neubert, G. Gründel: Altersabhängigkeit der Dichte α1-adrenerger Rezeptoren an Leberzellmembranen beim Haushuhn

M. Rohrs und P. Ebinger: Verwirrt ist nicht gleich wild: Die Hirngewebe verwirfter Haussäugetiere

A. Klein, A. Adamik und R. Mischke: Lagerungsbedingte Veränderungen im Thrombozytenkonzentrat des Hundes. Teil I: Zahl und In-vitro-Funktionsfähigkeit der Thrombozyten

P. Reinhold, A. Langenberg, G. Bocher, M. Rothe: Das Atemkondensat – ein nichtinvasiv zu gewinnendes Medium zum Nachweis von Entzündungsmediatoren der Lunge

Rubriken

- Neue Bücher 260
- Tagungen und Sitzungen 264
- Tagungsberichte 265
- Aus der Industrie 268
- Kleine Mitteilungen 269
- Von Universitäten und Hochschulen 277
- Persönliches 279
- Vorschau 280
Study of the effect of *Lactobacillus paracasei* and fructooligosaccharides on the faecal microflora in weaning piglets

R. Nemcová, A. Bomba, S. Gancarčíková, R. Herich, P. Guba

Summary: The influence of administration of *Lactobacillus paracasei* alone and mixture of *Lactobacillus paracasei* and fructooligosaccharide on faecal bacteria counts in the weaning pigs was investigated. The administration of *Lactobacillus paracasei* alone significantly decreased *Clostridium* (p < 0.05) and *Enterobacteriaceae* (p < 0.05) counts as compared to the control. *Lactobacillus paracasei* administered in combination with fructooligosaccharide significantly increased *Lactobacillus* (p < 0.01–p < 0.05), *Bifidobacterium* (p < 0.05), total anaerobes (p < 0.05), and total aerobes (p < 0.05) counts compared to control group as well as *Lactobacillus paracasei* group and significantly decreased *Clostridium* (p < 0.05) and *Enterobacteriaceae* (p < 0.01) counts compared to control group. The results obtained point out to a synergic effect of the combination of *Lactobacillus paracasei* and fructooligosaccharide on numbers of bacterial populations observed in the faeces of the weaning pigs.

Zusammenfassung: In der vorliegenden Arbeit wurde der Einfluss der Applikation von *Lactobacillus paracasei* allein und der Mischung von *Lactobacillus paracasei* und Fruktoligosacchariden auf die Zahlen der Kotbakterien bei den Absatzferkeln untersucht. Die Inokulation von *Lactobacillus paracasei* allein erniedrigte die Zahlen von *Clostridium* (p < 0.05) und *Enterobacteriaceae* (p < 0.05) gegenüber der Kontrollgruppe signifikant. *Lactobacillus paracasei*, der in der Mischung mit Fruktoligosacchariden appliziert wurde, hat die Zahlen von *Lactobacillus* (p < 0.01 bis p < 0.05), *Bifidobacterium* (p < 0.05), die Gesamtkeimzahl der aeroben Bakterien (p < 0.05) und der anaeroben Bakterien (p < 0.05) signifikant gegenüber der Kontrollgruppe und der *Lactobacillus paracasei* Gruppe erhöht. Gleichzeitig hat die Mischung von *Lactobacillus paracasei* und Fruktoligosacchariden die Zahlen von *Clostridium* (p < 0.05) und *Enterobacteriaceae* (p < 0.01) gegenüber der Kontrollgruppe erniedrigt. Die Ergebnisse zeigen den synergistischen Effekt der Kombination von *Lactobacillus paracasei* und Fruktoligosacchariden auf die Zahlen der Bakterienpopulationen in den Kotproben von Absatzferkeln.

Schlüsselworte: *Lactobacillus paracasei*, Fruktoligosaccharide, Kotmikroflora, Absatzferkel

Introduction

Promoting animal health, improving growth rate and feed efficiency through modification of microbial fermentation in the gastrointestinal tract of monogastric animals is a subject of considerable interest. The diverse collection of microorganisms colonising the healthy gastrointestinal tract of pigs plays an essential role both for the well-being of the animal and for animal nutrition and performance as well as for the quality of animal products. A number of naturally-occurring and artificial factors have been shown to affect the composition and activity of the microbiota in the gastrointestinal tract of pigs, these include: diet composition, growth promoting antibiotics, copper, use of probiotics, specific carbohydrates, organic acids, and fermented feed (Jensen, 1998).

Probiotics, including yeast, lactobacilli, bacilli, streptococci, have been reported to improve intestinal microbial balance of neonatal and weaned pigs (Muralidhara et al., 1977, Gedek, 1986, Mathew et al., 1998). They could be defined as selected and concentrated viable counts of beneficial bacteria and yeast, that are administered orally, either alone or in feed, with the intent of establishing a favourable intestinal microflora, in order to prevent digestive disorders and/or to increase performance (Fuller, 1989). Specific carbohydrates, especially fructooligosaccharides (FOS), are naturally occurring oligosaccharides, mainly of plant origin. They have been shown to be resistant to endogenous glycolytic enzymes of the host and to pass unaltered to the colon (Oku et al., 1984). FOS can significantly modulate the colonic microbiota by increasing the specific bacteria count and thus changing the composition of the microbiota.

The concept of "synbiotics" (mixture of probiotic and oligosaccharide) has recently been proposed to characterise health-enhancing foods and supplements used as functional food ingredients in humans (Gibson and Roberfroid, 1995, Kontula et al., 1998). When combining both a probiotic and oligosaccharide, the expected benefits are an improved survival during the passage of the probiotic bacteria through the upper intestinal tract and a more efficient implantation in the colonic microbiota together with a stimulating effect of the
oligosaccharide on the growth and/or the activities of both the exogenous (probiotic) and endogenous bacteria (Roberfroid, 1998). Biological preparation containing Enterococcus faecium M-74 and mannan-oligosaccharides can have beneficial effect on pig growth and feed conversion (Kumprecht and Zbob, 1998). Mixed probiotics containing Lactobacillus fermentum, Enterococcus faecium, lactulose and lactitol, improved daily gains and decreased mortality of piglets (Nousiainen and Setälä, 1993).

The aim of the present study was to observe the effect of the administration of Lactobacillus paracasei and mixture of Lactobacillus paracasei and fructooligosaccharide on bacteria counts in the faeces of the weaning pigs under field conditions.

Materials and Methods

The study with piglets, crossbreds Landrace, Yorkshire and Pietrain breeds weaned at the age of 36 days, was conducted at large-scale pig farm. The trial involved piglets of average live weight 7 kg. Piglets were kept in 9 cages, ten animals per cage. The cages were placed in one stall. Throughout the study, the animals were fed feed mixtures for early weaning of piglets (ČOS, Polnonáku Spiši, Spišské Vlachy, Slovak Republic). 3 experimental groups were used in trial: group 1 (3 cages) – control without any additives group 2 (3 cages) – 1 x 10⁸ of Lactobacillus paracasei per 1 g group 3 (3 cages) – 1 x 10⁹ of Lactobacillus paracasei per 1 g and FOS (Raffilose P95).

Raffilose P95 was manufactured by Raffinerie Tirlemontoise, Tienen, Belgium. Lactobacillus paracasei was isolated from the intestine of one week-old piglets and characterized at our laboratory (Nemcová et al., 1997). Additives were administered per os immediately on day 1 of weaning throughout 10 days. The experimental animals received FOS daily at a dose of 3 g and Lactobacillus paracasei daily at a dose of 2 g for one weaning pig.

20 days after the beginning of the study, fresh samples of faeces were taken from 7 animals from each group. 1g of faeces was placed in sterile polystyrene Stomacher Lab Blender bag (Seward Medical Limited, London, UK) with 9 ml of sterile anaerobic diluent (0.4 g NaHCO₃, 0.05 g L-cysteine HCl, 1 ml resazurin 0.1 %, 7.5 ml mineral solution 1/0.6 % K₂HPO₄, 7.5 ml mineral solution 1/1.5 % NaCl, 1.2 % (NH₄)₂SO₄, 0.6 % KH₂PO₄, 0.12 % CaCl₂, 0.25 % MgSO₄ and 84 ml distilled water, pH 6.8) and stomached (Stomacher Lab Blender 80, Seward Medical Limited, London, UK) for 2 min under a CO₂ atmosphere. Series of 10-fold dilutions (10⁻² to 10⁻⁸) were made in the same diluents. From appropriate dilutions, 0.1 ml aliquots were spread onto two nonselective agar plates: trypticase soy blood agar with 10 % sheep blood (BSI, Microbiology systems, Cockeysville, USA) for aerobes and Schaefer agar with 1 % vitamin K₁ – hemin solution (BSI) for anaerobes. Aliquots (0.1 ml) were also spread on 6 selective agar media: Bile capstern medium (Bleens, 1990) for Bifidobacterium, Rogosa agar (Imuna, Šarišské Michal'any, Slovakia) for Lactobacillus, Enterococcus agar (BBR) for Enterococcus, Clostridial agar (BBR) for Clostridium, MacConkey agar (Imuna) for Coliforms and Endo agar (Imuna) for Enterobacteriaceae. For anaerobes, plates containing the media were kept in the anaerobic jars for 24 h before analysis. Incubation of the inoculated media for anaerobic bacteria was carried out at 37 °C for 4 days under anaerobiosis (Gas Pak Plus, BBL). Plates for the enumeration of aerobic bacteria were incubated for 2 days at 37 °C. Colonies were counted and bacteria were Gram stained and visualized under the microscope for morphological characterization. Total anaerobic counts were corrected by evaluating aerotolerance of the different colony types. The viable counts are expressed as the log 10 of colony-forming units (CFU) g⁻¹ of faeces. The results are presented as mean values ± SEM. Statistical significance was determined by the t-test.

Results

Numbers of individual bacterial populations found in both experimental and control animals are presented in Table 1. In faeces of experimental animals receiving the mixture of Lactobacillus paracasei and FOS, significantly higher Lactobacillus (p < 0.01), Bifidobacterium (p < 0.05), total aerobes (p < 0.05), total aerobes and total anaerobes (p < 0.05) counts have been found as compared to the control and significantly higher anaerobes (p < 0.05), total aerobes (p < 0.05), Bifidobacterium (p < 0.05), and Lactobacillus (p < 0.05) counts compared to Lactobacillus paracasei group. Compared to the control, significant decrease in Clostridium (p < 0.05), Enterobacteriaceae (p < 0.01) counts was observed as well as an insignificant decrease in Coliform counts by 1 log. Enterococcus counts were significantly reduced (p < 0.001) compared to both control group and Lactobacillus paracasei receiving group. In faeces of experimental animals receiving Lactobacillus paracasei, significant

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total anaerobes</td>
<td>9.8 ± 0.2</td>
<td>9.8 ± 0.3</td>
<td>10.2 ± 0.2</td>
</tr>
<tr>
<td>Total aerobes</td>
<td>8.0 ± 0.5</td>
<td>8.3 ± 0.2</td>
<td>9.3 ± 0.7</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>7.5 ± 0.3</td>
<td>7.1 ± 0.7</td>
<td>8.2 ± 0.3</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>9.9 ± 0.1</td>
<td>9.9 ± 0.3</td>
<td>10.3 ± 0.1</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>9.3 ± 0.1</td>
<td>9.3 ± 0.3</td>
<td>8.2 ± 0.2</td>
</tr>
<tr>
<td>Clostridium</td>
<td>8.1 ± 0.1</td>
<td>7.4 ± 0.4</td>
<td>7.7 ± 0.3</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>7.9 ± 0.4</td>
<td>6.5 ± 0.9</td>
<td>5.9 ± 0.9</td>
</tr>
<tr>
<td>Coliforms</td>
<td>6.8 ± 0.7</td>
<td>6.3 ± 0.7</td>
<td>5.8 ± 0.7</td>
</tr>
</tbody>
</table>

Values are mean ± SEM of log bacteria counts per gram of wet faeces (n = 7)

- group 1 – control
- group 2 – Lactobacillus paracasei
- group 3 – Lactobacillus paracasei and FOS

* Significantly different from control group
** Significantly different from control group
*** Significantly different from Lactobacillus paracasei group

p < 0.05
p < 0.01
p < 0.001
decrease in *Clostridium* (p < 0.05) and *Enterobacteriaceae* (p < 0.05) counts as compared to the control was recorded. *Cloiform* counts were by 0.5 log lower compared to control. This difference, however, was insignificant similarly like with *Cloiform* in previous experimental group due to the great variance of values in individual groups. *Lactobacillus*, *Enterooccus* and total anaerobes counts were identical in both groups. An insignificant increase in total aerobes in favour of experimental group was recorded and vice versa, there was an insignificant decrease in *Bifidobacterium* as compared to the control group.

Discussion

As indicated by the results of the trial, the administration of *Lactobacillus paracasei* alone decreased *Clostridium* and *Enterobacteriaceae* counts, whereas the administration of *Lactobacillus paracasei* in combination with FOS has been manifested by a significant alteration in the numbers of all bacteria observed in faeces. The administration of *Lactobacillus paracasei* alone did not influence the concentration of lactobacilli. In our previous studies with gnotobiotic piglets we observed that the above-mentioned strain of *Lactobacillus paracasei* adhered to gut mucosa of both jejenum and ileum and survived in the intestinal tract (Nemcova et al., 1998). We can suppose that unchanged fecal lactobacilli counts that we have observed may be associated with the above-mentioned ability of this strain to be adhered to gut mucosa.

FOS are known for their ability to stimulate the growth of bifidobacteria and lactobacilli under *in vitro* and *in vivo* conditions which belong to beneficial intestinal bacteria (Hidaka et al., 1986, Mitsuoka et al., 1987, Ito et al., 1990, Sghir et al., 1998). The above-mentioned fact is confirmed also by our observations. In faeces of animals receiving the mixture of *Lactobacillus paracasei* and FOS significantly higher *Lactobacillus* and *Bifidobacterium* counts were recorded compared to other groups observed. Lactic and acetic acids prove to be the main fermentation products of both lactobacilli and bifidobacteria. Some authors, however, claim that after fermentation of FOS by faecal inocula, succinate, propionate and butyrate could be detected (Wang and Gibson, 1993). The elevation in the concentrations of the above-mentioned acids may indicate the direct fermentation of FOS by other bacteria, or indirect fermentation of end products produced by lactobacilli and bifidobacteria. In our study we have also recorded higher level of butyric acids in animals receiving *Lactobacillus paracasei* and FOS (the results will be presented later on). This suggests that butyrate-producing bacteria are also involved in FOS fermentation. An increased butyrate production may be associated with significantly higher numbers of total anaerobes and aerobes observed by ourselves. These bacteria should be identified. Butyrate is known to be the major substrate for energy metabolism in colonic mucosa and it stimulates epithelial cell growth (Roediger, 1982). Hartemink et al. (1997) report that most enterobacteria in the human intestine are able to ferment FOS to a some extent. Morisse et al. (1993) were able to show a significant increase in sacrophytic *E. coli* counts in rabbits with an FOS-containing diet. FOS has been shown to enhance the growth of *Bacteroides*, *Clostridium* and *Eubacterium* (Yamada et al., 1993, Jaskari et al., 1998).

In conclusion, the results of this study point to a synergistic effect of *Lactobacillus paracasei* and FOS combination on faecal microflora of weaned pigs. This effect was demonstrated by increased total anaerobes, aerobes, lactobacilli, and bifidobacteria counts as well as by decreased clostridia, *Enterobacteriaceae* and *E. coli* counts. The combination of probiotics and non-digestible carbohydrates may be a way of stabilization and/or potentiation of the effect of probiotics. Such potentiated probiotics indicate a realistic way of using biological preparations in the prevention of gastrointestinal diseases in weaned pigs.

References

Corresponding author: Dr. Radomíra Nemcová, DVM, PhD Research Institute of Veterinary Medicine, Hlinkova 1/A, SK 040 01 Košice, Slovak Republic.